Deep Reinforcement Learning -
Environments Tour

Unity ML-Agents

Starcraft 2
DeepMind toolset PySc2

OpenSim RL - osim-rl

Machine Learning Gdansk, 02.10.2017 - Adam Wraébel

Concepts behind Reinforcement Learning

Supervised learning = mimic the right answers, based on many examples
Unsupervised learning = find patterns in data, infer hidden structure without examples

Reinforcement learning = no examples, just the reward function, data could have no hidden structure

at all - just do the task very well
=)=

Environment

A

—

4 D

! Re 5

S Wapg <

I nterpreter
S (OO
late 1
L |
Ag en t https://en.wikipedia.org/wiki/File:Reinforcement_learning_diagram.svg

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

Concepts behind Reinforcement Learning

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

http://www.youtube.com/watch?v=faDKMMwOS2Q

Concepts behind Reinforcement Learning

AlphaGo paper : https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf

a b
Rollout policy SL policy network RL policy network Value network Policy network Value network
Pr Py Po Y z Polp(als) Vo(s)
o Bl R
o0 g @ :
<]
= S ' :
: :
/ El .
5

Human expert positions Self-play Positions

Figure 1: Neural network training pipeline and architecture.

Machine Learning Gdansk, 02.10.2017 - Adam Wraébel

Concepts behind Reinforcement Learning --- http://cs229.stanford.edu/

Formalism of learning process = Markov Decision Processes

A Markov decision process is a tuple (S, A, {P.,},v, R), where:

e S is a set of states. (For example, in autonomous helicopter flight, S
might be the set of all possible positions and orientations of the heli-
copter.)

e Ais a set of actions. (For example, the set of all possible directions in
which you can push the helicopter’s control sticks.)

e P, are the state transition probabilities. For each state s € S and
action a € A, P,, is a distribution over the state space. We'll say more
about this later, but briefly, P,, gives the distribution over what states
we will transition to if we take action a in state s.

e v € [0,1) is called the discount factor.

e 7:5x A R is the reward function. (Rewards are sometimes also

written as a function of a state S only, in which case we would have
R:S—R).

len.wikipedia.org/wiki/File:Reinforcement_learning_diagram.svg

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

Concepts behind Reinforcement Learning --- http://cs229.stanford.edu/

ag al az

az
g — 58 > S9 Pl) L

Apply discount to know total

payoff R(sg,a0) +vR(s1,a1) + Y*R(sg,az) + - - .
(it makes the agent focus more on

short-term goals) g~ [U: 1)

We can use simpler, R(Sn) == "}'R(Sl) 4 ’}"'ER(SQ) | s .

State-only dependant rewards
(but not required)

Our goal in reinforcement learning is to choose actions over time so as to
maximize the expected value of the total payoft:

E [R(S[}) + "}fR(Sl) + HI'ER(S?) &l }

https://en.wikipedia.org/wiki/File:Reinforcement_learning_diagram.svg

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

Concepts behind Reinforcement Learning --- http://cs229.stanford.edu/

A policy is any function 7 : S — A mapping from the states to the
actions. We say that we are executing some policy 7 if, whenever we are
in state s, we take action a = m(s). We also define the value function for
a policy m according to

VW(S) =B [R-(S.[]) + ’}’R(Sl) ~+ ’}JER(SQ) Gt | Sg — S, ?T}.

V7™(s) is simply the expected sum of discounted rewards upon starting in
state s, and taking actions according to .}

Given a fixed policy 7, its value function V™ satisfies the Bellman equa-
tions:

V™(s) = R(s) + 71 Y _ Parie)(8)V™(S).

s'es

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

Introduction to RL

Example explanation on Atari games

https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/16_Reinforcement_Learning.ipynb

e Absolutely best materials from this guy:

a. TensorFlow Tutorial #16 Reinforcement Learning
b https://github.com/Hvass-Labs/TensorFlow-Tutorials

c. Great, in-depth, scientific to the bone!

d

Good for beginners - just click through the notebook

e For Windows, some libraries are missing. Try these

a. For atari-py -> https://github.com/j8lp/atari-py (involves installing MSYS)

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://www.youtube.com/watch?v=Vz5l886eptw
https://github.com/Hvass-Labs/TensorFlow-Tutorials
https://github.com/j8lp/atari-py

B u t Why D E E P I’e] nfO rcemen t lea I’m n g? https://www.intelnervana.com/demystifying-deep-reinforcement-learning/

Specific solutions are, for example:
- Q-learning - https://en.wikipedia.org/wiki/Q-learning

learned value

Q(s1,a:) + Q(s1,at) + o : Ty T+ g : max Q(s¢+1,a) — Q(5¢,a¢)
e — ~ —~— — a S —
ald value learning rate reward discount factor g old value

estimate of optimal future value

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat
select and carry out an action a
observe reward r and new state s’
Qls,a]l = Q[s,a] + alr + y max,. Q[s',a'] - Q[s,al)
gu=:8
until terminated

We describe the state of the game with a set of parameters, specific to the
environment - not universal

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://en.wikipedia.org/wiki/Q-learning

B u t Why D E E P I’e] nfO rcemen t lea I’m n g? https://www.intelnervana.com/demystifying-deep-reinforcement-learning/

Specific solutions are, for example:
- Deep Q-Iearning (baselines.deepq)

- Atruly universal representation could be just the pixels - we do not care how many
parameters are in there, in theory the whole game state can be viewed on screen

- Run the screen through Convolutional Neural Net -> and get the Q-values

initialize replay memory D
initialize action-value function Q with random weights

observe initial state s Q-value 1
repeat
select an action a

with probability & select a random action
otherwise select a = argmax.-Q(s,a’)

carry out action a

observe reward r and new state s’

store experience <s, a, r, s> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transition
if ss’ is terminal state then tt = rr

Q-value 2 Q-value n

A

Network

A

State

otherwise tt = rr + ymax..Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))?as loss e-greedy exploration — with probability € choose a
random action, otherwise go with the “greedy” action
g gt with the highest Q-value. Decreases ¢ over time from
until terminated 1t00.1

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

B u t Why D E E P I’e] nfO rcemen t lea I’m n g? https://www.intelnervana.com/demystifying-deep-reinforcement-learning/

Specific solutions are, for example:

- Proximal Policy Optimization (PPO) - https://blog.openai.com/openai-baselines-ppo/
- https://arxiv.org/pdf/1707.06347 .pdf

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://blog.openai.com/openai-baselines-ppo/

Google DeepMind + Blizzard = SC2LE

The SC2LE release includes:
e A Machine Learning APl developed by Blizzard that gives researchers and developers

hooks into the game. This includes the release of tools for Linux for the first time.

e A dataset of anonymised game replays, which will increase from 65k to more than half a
million in the coming weeks.

e An open source version of DeepMind’s toolset, PySC2, to allow researchers to easily use
Blizzard’s feature-layer API with their agents.

e A series of simple RL mini-games to allow researchers to test the performance of agents on
specific tasks.

e A joint paper that outlines the environment, and reports initial baseline results on the
mini-games, supervised learning from replays, and the full 1v1 ladder game against the

built-in Al.
Starcraft Il RL Tutorial 1 http://chris-chris.ai/2017/08/30/pysc2-tutorial1/
Guide to DeepMinds Starcraft Al Environment https://www.youtube.com/watch?v=URWXG5jRB-A
Building Bots In Starcraft 2 https://gamescapad.es/building-bots-in-starcraft-2-for-psychologists/#installation

https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://github.com/Blizzard/s2client-proto
https://github.com/Blizzard/s2client-proto#replay-packs
https://github.com/deepmind/pysc2
https://deepmind.com/documents/110/sc2le.pdf
http://chris-chris.ai/2017/08/30/pysc2-tutorial1/
https://www.youtube.com/watch?v=URWXG5jRB-A

Google DeepMind + Blizzard = SC2LE

e DEMO

[]

e Git clone https://qithub.com/Blizzard/s2client-proto.qit

o

e Git clone https://github.com/lISourcell/A-Guide-to-DeepMinds-StarCraft-Al-Environment.qit
° pip install pysc2

° pip install baselines

° pip install tensorflow

Jupyter notebook
-> A Guide to DeepMind's StarCraft Al Environment.ipynb

https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://github.com/Blizzard/s2client-proto.git
https://github.com/llSourcell/A-Guide-to-DeepMinds-StarCraft-AI-Environment.git

OpenSim Core + Opensim-RL + keras + keras-RL = Creepy Skeletons

e https://github.com/opensim-org/opensim-core https://github.com/stanfordnmbl/osim-r|

a. http://opensim.stanford.edu/

https://github.com/matthiasplappert/keras-rl
BTW - keras-rl is passing development to community!
HELP WANTED

Machine Learning Gdansk, 02.10.2017 - Adam Wraébel

https://github.com/opensim-org/opensim-core
http://opensim.stanford.edu/
https://github.com/stanfordnmbl/osim-rl
https://github.com/matthiasplappert/keras-rl

OpenSim Core + Opensim-RL + keras + keras-RL = Creepy Skeletons

e https://github.com/matthiasplappert/keras-rl

a. Deep Q Learning (DQN) [1], [2]

b. Double DQN [3]

c. Deep Deterministic Policy Gradient
(DDPG) [4]
Continuous DQN (CDQN or NAF) [6]
Cross-Entropy Method (CEM) [7], [8]
Dueling network DQN (Dueling DQN) [9]
Deep SARSA [10]

Q@ -0 Q

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://github.com/matthiasplappert/keras-rl
http://arxiv.org/abs/1312.5602
http://home.uchicago.edu/~arij/journalclub/papers/2015_Mnih_et_al.pdf
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1603.00748
http://learning.mpi-sws.org/mlss2016/slides/2016-MLSS-RL.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.6579&rep=rep1&type=pdf
https://arxiv.org/abs/1511.06581
http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf

OpenSim Core + Opensim-RL + keras + keras-RL = Creepy Skeletons

https://github.com/stanfordnmbl/osim-rl -> tutorial
DEMO

Install Anaconda

Create Anaconda Python environment

a. conda create -n opensim-rl -c kidzik opensim git python=2.7

activate opensim-rl

conda install -c conda-forge lapack git

pip install git+https://github.com/stanfordnmbl/osim-rl.git
Check import python -c "import opensim"

Run this python snippet:

© Q2 o U

from osim.env import RunEnv

env = RunkEnv(visualize=True)
observation = env.reset(difficulty = @)
for i in range(200):

observation, reward, done, info = env.step(env.action_space.sample())

/

Random Activation Vector

Machine Learning Gdansk, 02.10.2017 - Adam Wraébel

https://github.com/stanfordnmbl/osim-rl

OpenSim Core + Opensim-RL + keras + keras-RL = Creepy Skeletons

e WHAT IS THE STATE?
a. Current positions
b. Velocities of joints (angular velocities)
c. Accelerations of joints (angular accelerations)

e Substitute random activation with invocation of your own controller

total reward = 0.0
for i in range(200):
make a step given by the controller and record the state and the reward

observation, reward, done, info = env.step(my_controller(observation))
total_reward += reward
if done:

break

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

OpenSim Core + Opensim-RL + keras + keras-RL = Creepy Skeletons

Tutorial for Deep Deterministic Policy Gradients.
conda install keras -c conda-forge

pip install git+https://github.com/matthiasplappert/keras-rl.git
git clone http://github.com/stanfordnmbl/osim-rl.git

cd osim-rl/scripts

python example.py --visualize --train --model sample

python example.py --visualize --test --model sample # walk as far as possible

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

http://github.com/stanfordnmbl/osim-rl.git

Unity Machine Learning Agents

State & Reward

Action

https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/

Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

Unity Machine Learning Agents

https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-Started-with-Balance-Ball.

md -> Building Unity Environment

https://github.com/Unity-Technologies/ml-agents/tree/master/unity-environment

Tutorial = https://github.com/Unity-Technologies/ml-agents/tree/master/python
Git clone...

Cd python

Pip install -r requirements.txt

Jupyter notebook

Navigate to web browser URL=localhost:8888

-> Basics.ipynb (launching and interfacing with Unity)

-> PPO.ipynb (training agents)

Tensorboard --logdir="./summaries’
Navigate to web browser URL=localhost:6006 # to monitor training

For the impatient people - training on AWS UNITY + AWS
Machine Learning Gdansk, 02.10.2017 - Adam Wrobel

https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-Started-with-Balance-Ball.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-Started-with-Balance-Ball.md
https://github.com/Unity-Technologies/ml-agents/tree/master/unity-environment
https://github.com/Unity-Technologies/ml-agents/tree/master/python
https://medium.com/towards-data-science/how-to-run-unity-on-amazon-cloud-or-without-monitor-3c10ce022639

Materials

Tutorials & Courses on Reinforcement Learning:

Berkeley Deep RL course by Sergey Levine
Intro to RL on Karpathy's blog

Intro to RL by Tambet Matiisen

Deep RL course of David Silver

A comprehensive list of deep RL resources

Frameworks and implementations of algorithms:

RLLAB
modular rl
keras-rl

OpenSim and Biomechanics:

OpenSim Documentation

Muscle models

Publication describing OpenSim

Publication describing Simbody (multibody dynamics engine)

Machine Learning Gdansk, 02.10.2017 - Adam Wraébel

http://rll.berkeley.edu/deeprlcourse/
http://karpathy.github.io/2016/05/31/rl/
https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLHOg3HfW_teiYiq8yndRVwQ95LLPVUDJe
https://github.com/dennybritz/reinforcement-learning
https://github.com/openai/rllab
https://github.com/joschu/modular_rl
https://github.com/matthiasplappert/keras-rl
http://simtk-confluence.stanford.edu:8080/display/OpenSim/OpenSim+Documentation
http://simtk-confluence.stanford.edu:8080/display/OpenSim/First-Order+Activation+Dynamics
http://nmbl.stanford.edu/publications/pdf/Delp2007.pdf
http://ac.els-cdn.com/S2210983811000241/1-s2.0-S2210983811000241-main.pdf?_tid=c22ea7d2-50ba-11e7-9f69-00000aacb361&acdnat=1497415051_124f3094c7fec3c60165f5d544a184f4

